Environmental interaction influences muscle activation strategy during sand-swimming in the sandfish lizard Scincus scincus.
نویسندگان
چکیده
Animals like the sandfish lizard (Scincus scincus) that live in desert sand locomote on and within a granular medium whose resistance to intrusion is dominated by frictional forces. Recent kinematic studies revealed that the sandfish utilizes a wave of body undulation during swimming. Models predict that a particular combination of wave amplitude and wavelength yields maximum speed for a given frequency, and experiments have suggested that the sandfish targets this kinematic waveform. To investigate the neuromechanical strategy of the sandfish during walking, burial and swimming, here we use high-speed X-ray and visible light imaging with synchronized electromyogram (EMG) recordings of epaxial muscle activity. While moving on the surface, body undulation was not observed and EMG showed no muscle activation. During subsurface sand-swimming, EMG revealed an anterior-to-posterior traveling wave of muscle activation which traveled faster than the kinematic wave. Muscle activation intensity increased as the animal swam deeper into the material but was insensitive to undulation frequency. These findings were in accord with empirical force measurements, which showed that resistance force increased with depth but was independent of speed. The change in EMG intensity with depth indicates that the sandfish targets a kinematic waveform (a template) that models predict maximizes swimming speed and minimizes the mechanical cost of transport as the animal descends into granular media. The differences in the EMG pattern compared with EMG of undulatory swimmers in fluids can be attributed to the friction-dominated intrusion forces of granular media.
منابع مشابه
Undulatory swimming in sand: subsurface locomotion of the sandfish lizard.
The desert-dwelling sandfish (Scincus scincus) moves within dry sand, a material that displays solid and fluidlike behavior. High-speed x-ray imaging shows that below the surface, the lizard no longer uses limbs for propulsion but generates thrust to overcome drag by propagating an undulatory traveling wave down the body. Although viscous hydrodynamics can predict swimming speed in fluids such ...
متن کاملInvestigating the Locomotion of the Sandfish in Desert Sand Using NMR-Imaging
The sandfish (Scincus scincus) is a lizard having the remarkable ability to move through desert sand for significant distances. It is well adapted to living in loose sand by virtue of a combination of morphological and behavioural specializations. We investigated the bodyform of the sandfish using 3D-laserscanning and explored its locomotion in loose desert sand using fast nuclear magnetic reso...
متن کاملAdaptation to life in aeolian sand: how the sandfish lizard, Scincus scincus, prevents sand particles from entering its lungs
The sandfish lizard, Scincus scincus (Squamata: Scincidae), spends nearly its whole life in aeolian sand and only comes to the surface for foraging, defecating and mating. It is not yet understood how the animal can respire without sand particles entering its respiratory organs when buried under thick layers of sand. In this work, we integrated biological studies, computational calculations and...
متن کاملMechanics of Undulatory Swimming in a Frictional Fluid
The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere ...
متن کاملCorrection. Locomotor benefits of being a slender and slick sand-swimmer.
Squamates classified as 'subarenaceous' possess the ability to move long distances within dry sand; body elongation among sand and soil burrowers has been hypothesized to enhance subsurface performance. Using X-ray imaging, we performed the first kinematic investigation of the subsurface locomotion of the long, slender shovel-nosed snake (Chionactis occipitalis) and compared its biomechanics wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 2 شماره
صفحات -
تاریخ انتشار 2013